如图,三棱柱中,侧棱平面,为等腰直角三角形,,且分别是的中点. (1)求证:平面; (2)求三棱锥的体积. (3)若点是上一点,求的最小值.
已知圆,(Ⅰ)若直线过定点 (1,0),且与圆相切,求的方程;(Ⅱ) 若圆的半径为3,圆心在直线:上,且与圆外切,求圆的方程.
在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=9.(1)判断两圆的位置关系;(2)求直线m的方程,使直线m被圆C1截得的弦长为4,与圆C截得的弦长是6.
已知点和求过点且与的距离相等的直线方程.
已知函数,其中.(1)若对一切x∈R,≥1恒成立,求a的取值集合;(2)在函数的图像上取定两点,,记直线AB的斜率 为k,问:是否存在x0∈(x1,x2),使成立?若存在,求的取值范围;若不存在,请说明理由.
已知函数,将其图象向左移个单位,并向上移个单位,得到函数的图象.(1)求实数的值;(2)设函数,求函数的单调递增区间和最值.