已知四边形满足,,是的中点,将沿着翻折成,使面面,分别为的中点. (1)求三棱锥的体积;(2)证明:∥平面;(3)证明:平面平面
在如图所示的几何体中,四边形为平行四边形,,平面,,,,.(1)若是线段的中点,求证:平面;(2)若,求二面角的余弦值.
某中学将名高一新生分成水平相同的甲、乙两个“平行班”,每班人,吴老师采用、两种不同的教学方式分别在甲、乙两个班进行教学实验.为了解教学效果,期末考试后,分别从两个班级中各随机抽取名学生的成绩进行统计,作出的茎叶图如下:记成绩不低于分者为“成绩优秀”.(1)在乙班样本的个个体中,从不低于分的成绩中随机抽取个,记随机变量为抽到“成绩优秀”的个数,求的分布列及数学期望;(2)由以上统计数据填写下面列联表,并判断有多大把握认为“成绩优秀”与教学方式有关?
设函数.(1)求的定义域及最小正周期;(2)求的单调递减区间.
已知点在抛物线上,直线(,且)与抛物线,相交于、两点,直线、分别交直线于点、.(1)求的值;(2)若,求直线的方程;(3)试判断以线段为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.
已知函数,.(1)若函数在其定义域上为增函数,求的取值范围;(2)当时,函数在区间上存在极值,求的最大值.(参考数值:自然对数的底数≈).