如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点. (1)若PA=PD,求证:平面PQB⊥平面PAD; (2)若平面PAD⊥平面ABCD,且PA=PD=AD=2,点M在线段PC上,且PM=3MC,求三棱锥P﹣QBM的体积.
已知函数. (1)试问的值是否为定值?若是,求出该定值;若不是,请说明理由; (2)定义,其中,求; (3)在(2)的条件下,令.若不等式对且恒成立,求实数的取值范围.
已知双曲线经过点,且双曲线的渐近线与圆相切. (1)求双曲线的方程; (2)设是双曲线的右焦点,是双曲线的右支上的任意一点,试判断以为直径的圆与以双曲线实轴为直径的圆的位置关系,并说明理由.
已知数列{an}的前n项和,且的最大值为4. (1)确定常数k的值,并求数列{an}的通项公式an; (2)令,数列{bn}的前n项和为Tn,试比较Tn与的大小.
如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求证:平面平面; (3)求三棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
(1)确定与的值; (2)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.