(本题8分)已知几何体A—BCED的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形,正视图为直角梯形.
(1)求异面直线DE与AB所成角的余弦值;
(2)求二面角A-ED-B的正弦值;
(3)求此几何体的体积V的大小。
如图所示,在直三棱柱A1B1C1—ABC中,AC⊥BC,AC=4,BC=CC1=2.若用平行于三棱柱A1B1C1—ABC的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小值为________.
一个空间几何体的三视图如下图,其中正视图是边长为2的正三角形,俯视图是边长分别为1,2的矩形,则该几何体的侧面积为( )
A. | B. | C. | D. |
某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,左视图是边长为2的正方形,则此四面体的四个面中面积最大的为( )
A. | B.4 |
C. | D. |
已知某几何体的三视图如图所示,正视图和侧视图是边长为1的正方形,俯视图是腰长为1的等腰直角三角形,则该几何体的体积是( ).
A. | B. | C. | D. |
(本小题满分13分)如图:是直径为的半圆,为圆心,是上一点,且.,且,,为的中点,为的中点,为上一点,且.
(Ⅰ)求证: 面⊥面;
(Ⅱ)求证:∥平面;
(Ⅲ)求三棱锥的体积.
(本小题满分12分)如图,棱长为1的正方体ABCD-A1B1C1D1中,
(Ⅰ)求证:AC⊥平面B1D1DB;
(Ⅱ)求证:BD1⊥平面ACB1;
(Ⅲ)求三棱锥B-ACB1体积.
将边长为的正方形沿对角线折起,使得平面平面,在折起后形成的三棱锥中,给出下列三个命题:
①面是等边三角形; ②; ③三棱锥的体积是.
其中正确命题的序号是______________.(写出所有正确命题的序号)
在如图所示的多面体ABCDE中,AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,,F是CD的中点.
(Ⅰ)求证AF∥平面BCE;
(Ⅱ)求多面体ABCDE的体积.
利用一个球体毛坯切削后得到一个四棱锥P—ABCD,其中底面四边形ABCD是边长为1的正方形,PA=1,且,则球体毛坯体积的最小值应为 .
(本小题满分14分)如图1,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图2所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积;
已知某几何体的三视图如图所示,正视图和侧视图是边长为1的正方形,俯视图是腰长为1的等腰直角三角形,则该几何体的体积是( ).
A. | B. | C. | D. |