:对任意实数都有恒成立;:关于的方程有实数根;如果与中有且仅有一个为真命题,求实数的取值范围.
写出下列命题的否定,并判断其真假:(1)(2)
.已知,设在R上单调递减,的值域为R,如果“或”为真命题,“或”也为真命题,求实数的取值范围。
已知,设在R上单调递减,的值域为R,如果“或”为真命题,“或”也为真命题,求实数的取值范围。
命题p:“方程表示焦点在y轴上的椭圆”,命题q:“,恒成立”,若命题p与命题q有且只有一个是真命题,求实数的取值范围。
分别写出下列命题的逆命题,否命题与逆否命题,并判断其真假:原命题:已知,若,则.
将命题“正偶数不是质数”改写成“若则”的形式,并写出它的逆命题、否命题、逆否命题,并判断它们的真假。
已知命题“方程表示焦点在轴上的椭圆”,命题“方程表示双曲线”.(1)若是真命题,求实数的取值范围; (2)若是真命题,求实数的取值范围;(3)若“”是真命题,求实数的取值范围.
.(本小题12分)给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根.如果为真命题,为假命题,求实数的取值范围。
.(本小题12分)写出“若,则”的逆命题、否命题、逆否命题,并判其真假。
(本小题满分14分) 已知命题:存在,使;命题:方程表示双曲线.若命题“”为真命题,求实数的取值范围.
(本题8分)已知命题:“x2-x-6<0” ,命题:“ x2 >1”,若命题“p且q”为真,求x的范围
(本小题满分14分)已知函数R,且.(I)若能表示成一个奇函数和一个偶函数的和,求的解析式;(II)命题P:函数在区间上是增函数;命题Q:函数是减函数.如果命题P、Q有且仅有一个是真命题,求a的取值范围;
已知命题函数的定义域是R;命题q:方程有两个不相等的实数解,若“p且非q”为真,求实数的取值范围。
(本小题满分13分)已知,命题 “函数在上单调递减”,命题 “关于的不等式对一切的恒成立”,若为假命题,为真命题,求实数的取值范围.