(本小题满分13分)已知,命题 “函数在上单调递减”,命题 “关于的不等式对一切的恒成立”,若为假命题,为真命题,求实数的取值范围.
已知函数. (1)当时,求的单调区间和极值; (2)若对任意,恒成立,求的取值范围.
在△ABC中,A点的坐标为(3,0),BC边长为2,且BC在y轴上的区间[-3,3]上滑动. (1)求△ABC外心的轨迹方程; (2)设直线l∶y=3x+b与(1)的轨迹交于E,F两点,原点到直线l的距离为d,求的最大值.并求出此时b的值
(本小题满分14分) 已知,椭圆过点,两个焦点为。 (1)求椭圆C的方程; (2)是椭圆上的两个动点,如果直线的斜率与的斜率互为相反数,证明直线的斜率为定值,并求出这个定值。
正方形的一条边在直线上,另外两个顶点在抛物线上,求正方形的边长.
(本小题满分14分)现有一批货物用轮船从甲地运往乙地,甲乙两地距离为500海里,已知该船最大速度为45海里/小时,每小时运输成本由燃料费用和其它费用组成.轮船每小时的燃料费用与轮船速度的平方成正比,其余费用为每小时960元.已知轮船速度为20海里/小时,全程运输成本为30000元. (1)把全程运输成本(元)表示为速度(海里/小时)的函数; (2)为了使全程运输成本最小,轮船应为多大速度行驶?