某省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻(时) 的关系为,其中是与气象有关的参数,且.(1)令, ,写出该函数的单调区间,并选择其中一种情形进行证明;(2)若用每天的最大值作为当天的综合放射性污染指数,并记作,求;(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?
已知数列的前项和为,且 (Ⅰ)求数列的通项公式; (Ⅱ)已知数列的通项公式,记,求数列的前项和.
如图,四棱锥中,底面为矩形,⊥底面,,点是棱的中点. (Ⅰ)求点到平面的距离; (Ⅱ) 若,求二面角的平面角的余弦值 .
已知函数(其中的最小正周期为. (Ⅰ)求的值,并求函数的单调递减区间; (Ⅱ)在锐角中,分别是角的对边,若的面积为,求的外接圆面积.
某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,. (Ⅰ)求直方图中的值; (Ⅱ)如果上学所需时间不小于1小时的学生中可以申请在学校住宿,请估计学校 名新生中有多少名学生可以住宿.
(本小题满分10分)选修4-5:不等式选讲 对于任意的实数恒成立,记实数M的 最大值是m. (1)求m的值; (2)解不等式