已知指数函数满足:,定义域为的函数
是奇函数。(1)求的解析式;
(2)求m,n的值;
(3)若对任意的,不等式恒成立,求实数的取值范围。
(本小题满分12分)设函数f(x)的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0<f(x)<1。
(1)求证:f(0)=1,且当x<0时,有f(x)>1;
(2)判断f(x)在R上的单调性;
⑶设集合A={(x,y)|f(x2)f(y2)>f(1)},集合B={(x,y)|f(ax-y+2)=1,a∈R},若A∩B=,求a的取值范围。
用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数.
⑴试规定的值,并解释其实际意义;
⑵试根据假定写出函数应满足的条件和具有的性质;
⑶设,现有单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.
(本小题满分12分) 已知函数f(x)=ax2+bx+c(a>0,b∈R, c∈R).
(Ⅰ)若函数f(x)的最小值是f(-1)=0,且c=1,,
求F(2)+F(-2)的值
(Ⅱ)若a=1,c=0,且在区间(0,1]上恒成立,试求b的取值范围。
(本小题满分12分)已知是二次函数,不等式的解集是且在区间上的最大值是12.
(1)求的解析式;
(2)是否存在整数使得方程在区间内有且只有两个不等的实
数根?若存在,求出的取值范围;若不存在,说明理由.
设函数的图象经过原点,在其图象上一点P(x,y)处的切线的斜率记为.
(1)若方程=0有两个实根分别为-2和4,求的表达式;
(2)若在区间[-1,3]上是单调递减函数,求的最小值.
某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x(≥10)层,则每平方米的平均建筑费用为560+48(单位:元).为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=)
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米
(1)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?
(2)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值
已知,且(为自然对数的底数)。
(1)求与的关系;
(2)若在其定义域内为增函数,求的取值范围;
(3)证明:
(提示:需要时可利用恒等式:)
设
,已知函数
.
(Ⅰ)当
时,讨论函数
的单调性;
(Ⅱ)当
时,称
为
关于
的加权平均数.
(1)判断
是否成等比数列,并证明
;
(2)
的几何平均数记为
.称
为
的调和平均数,记为
.若
,求
的取值范围.
已知函数将的图象向右平移2个单位,得到的图象.
(1)求函数的解析式;
(2) 若函数与函数的图象关于直线对称,求函数的解析式;
(3)设已知的最小值是,且求实数的取值范围.