(本小题满分12分) 已知函数f(x)=ax2+bx+c(a>0,b∈R, c∈R).(Ⅰ)若函数f(x)的最小值是f(-1)=0,且c=1,,求F(2)+F(-2)的值(Ⅱ)若a=1,c=0,且在区间(0,1]上恒成立,试求b的取值范围。
如图,在矩形中,,点在边上,点在边上,且,垂足为,若将沿折起,使点位于位置,连接,得四棱锥. (1)求证:平面平面; (2)若,直线与平面所成角的大小为,求直线与平面所成角的正弦值.
已知,其中 (1)当时,求函数的最大值和最小值,并写出相应的的值. (2)若在R上恒为增函数,求实数的取值范围.
已知是关于的二次方程的两个实数根,求:(1)的值; (2)的值.
已知命题:直线与抛物线有两个交点;命题:关于的方程有实根.若为真命题,为假命题,求实数的取值范围.
如图,椭圆:()和圆,已知圆将椭圆的长轴三等分,且圆的面积为.椭圆的下顶点为,过坐标原点且与坐标轴不重合的任意直线与圆相交于点,直线与椭圆的另一个交点分别是点. (1)求椭圆的方程; (2)(Ⅰ)设的斜率为,直线斜率为,求的值; (Ⅱ)求△面积最大时直线的方程.