对于函数,若存在,使得成立,称为不动点,已知函数
(1) 当时,求函数不动点.
(2)若对任意的实数,函数恒有两个相异的不动点,求a的取值范围.
某市旅游部门开发一种旅游纪念品,每件产品的成本是元,销售价是元,月平均销售件.通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明,如果产品的销售价提高的百分率为,那么月平均销售量减少的百分率为.记改进工艺后,旅游部门销售该纪念品的月平均利润是(元).
(1)写出与的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使旅游部门销售该纪念品的月平均利润最大.
如图,在平面直角坐标系中,过轴正方向上一点任作一直线,与抛物线相交于两点.一条垂直于轴的直线,分别与线段和直线交于点.
(1)若,求的值;
(2)若为线段的中点,求证:为此抛物线的切线;
(3)试问(2)的逆命题是否成立?说明理由.
已知函数(为实数),函数
(1)若,且函数恒成立,求的值;
(2)在(1)条件下,当时, 是单调函数, 求实数k的取值范围;
(3)若, 且为偶函数, 判断的符号(正或负),并说明理由.
某企业利用银行无息贷款,投资400万元引进一条高科技生产流水线,预计每年可获产品利润100万元。但还另需用于此流水线的保养、维修费用第一年10万元,以后每年递增5万元,问至少几年可收回该项投资?(即总利润不小于总支出)
(求100~999中的水仙花数,所谓水仙花数是一个三位数,它的各位数字的立方和等于该数,例如153是一个水仙花数,因为.试编一段程序,找出所有的水仙花数.
(满分10分)某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品还需再向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.
(1)求分公司一年的利润(万元)与每件产品的售价的函数关系式;
(2)当每件产品的售价为多少元时,分公司一年的利润最大,
并求出的最大值
(12分)设函数满足条件f(-1+x)=f(-1-x),且关于x的不等式的解集为
(1)求函数f(x)的解析式;
(2)若时,不等式恒成立,求实数t的取值范围。