已知 设P:函数在R上单调递减; Q:不等式的解集为R,若“P或Q”是真命题,“P且Q”是假命题,求的取值范围.
已知命题:方程在上有且仅有一解;命题:只有一个实数满足不等式若命题是假命题,求的取值范围.
分别指出由下列各组命题构成的逻辑关联词“或”、“且”、“非”的真假。
(1)p: 梯形有一组对边平行;q:梯形有一组对边相等。
(2)p: 1是方程的解;q:3是方程的解。
(3)p: 不等式解集为R;q: 不等式解集为。
(4)p:
已知 设P:函数在R上单调递减; Q:不等式的解集为R,若“P或Q”是真命题,“P且Q”是假命题,求的取值范围.
[解题思路]:“P或Q”是真命题,“P且Q”是假命题,根据真假表知,P,Q之中一真一假,因此有两种情况,要分类讨论.
分别指出下列复合命题的形式及构成它的简单命题:
(1)3是质数或合数.
(2)他是运动员兼教练员.
(3)相似三角形不一定是全等三角形.
分别指出下列复合命题的形式及构成它的简单命题:
(1)3是质数或合数.
(2)他是运动员兼教练员.
(3)相似三角形不一定是全等三角形.
(本小题满分14分)
已知命题p:指数函数f(x)=(2a-6)x在R上单调递减,命题q:关于x的方程x2-3ax+2a2+1=0的两个实根均大于3.若p或q为真,p且q为假,求实数a的取值范围.