分别指出下列复合命题的形式及构成它的简单命题:(1)3是质数或合数.(2)他是运动员兼教练员.(3)相似三角形不一定是全等三角形.
已知函数.(1)若曲线在处的切线为,求的值;(2)设,,证明:当时,的图象始终在的图象的下方;(3)当时,设,(为自然对数的底数),表示导函数,求证:对于曲线上的不同两点,,,存在唯一的,使直线的斜率等于.
如图,在平面直角坐标系中,离心率为的椭圆的左顶点为,过原点的直线(与坐标轴不重合)与椭圆交于两点,直线分别与轴交于两点.若直线斜率为时,. (1)求椭圆的标准方程; (2)试问以为直径的圆是否经过定点(与直线的斜率无关)?请证明你的结论.
如图,在三棱锥中,底面,,,分别是的中点,在上,且.(1)求证:平面;(2)在线段上上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.
据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:
(1)已知在全体样本中随机抽取人,抽到持“应该保留”态度的人的概率为,现用分层抽样的方法在所有参与调查的人中抽取人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人? (2)在持“应该保留”态度的人中,用分层抽样的方法抽取人,再平均分成两组进行深入交流,求第一组中在校学生人数的分布列和数学期望.
【改编题】已知向量,,,函数,(1)求函数的最小正周期和单调递增区间;(2)当时,求函数的值域.