设函数,若函数在点处的切线为,数列定义:。
(1)求实数的值;
(2)若将数列的前项的和与积分别记为。证明:对任意正整数,为定值;证明:对任意正整数,都有。
已知数列{an}:a1,a2,a3,…,an,如果数列{bn}:b1,b2,b3,…,bn满足b1=an,bk=ak-1+ak-bk-1,其中k=2,3,…,n,则称{bn}为{an}的“衍生数列”.若数列{an}:a1,a2,a3,a4的“衍生数列”是5,-2,7,2,则{an}为________;若n为偶数,且{an}的“衍生数列”是{bn},则{bn}的“衍生数列”是________.
已知整数对的序列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1)(1,4),(2,3),(3,2),(4,1)……则第2011个数对是
已知等差数列{an}的前n项的和记为Sn.如果a4=-12, a8=-4.
(1)求数列{an}的通项公式;
(2)求Sn的最小值及其相应的n的值;
(3)从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和.
已知在平面直角坐标系中有一个点列:,……,.若点到点的变化关系为:,则等于 .
已知数列an:,…,依它的前10项的规律,则a99+a100的值为( )
A. | B. | C. | D. |
若数列{an}满足a1=2且an+an-1=2n+2n-1,Sn为数列{an}的前n项和,则log2(S2 012+2)=________.