已知等差数列{an}的前n项的和记为Sn.如果a4=-12, a8=-4.(1)求数列{an}的通项公式;(2)求Sn的最小值及其相应的n的值;(3)从数列{an}中依次取出a1,a2,a4,a8,…,,…,构成一个新的数列{bn},求{bn}的前n项和.
设函数. (1)若函数是定义域上的单调函数,求实数的取值范围; (2)若,试比较当时,与的大小; (3)证明:对任意的正整数,不等式成立.
如图,多面体中,四边形是边长为的正方形,,且,,. (Ⅰ)求证:平面垂直于平面; (Ⅱ)若分别为棱和的中点,求证:∥平面; (Ⅲ)求多面体的体积.
数列的前项和为,且. (1)求数列的通项公式; (2)若数列满足:,求数列的通项公式; (3)令,求数列的前 项和.
已知命题:函数在[-2,2]内有且仅有一个零点.命题:在区间[]内有解.若命题“且”是假命题,求实数的取值范围.
已知锐角中内角、、所对边的边长分别为、、,满足,且. (Ⅰ)求角的值; (Ⅱ)设函数,图象上相邻两最高点间的距离为,求的取值范围.