选修4—4:坐标与参数方程在直角坐标系中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知点A的极坐标为,直线的极坐标方程为,且点A在直线上.(Ⅰ)求的值及直线的直角坐标方程;(Ⅱ)圆C的参数方程为,试判断直线l与圆C的位置关系.
已知函数 (I)求函数的单调区间;(II)若关于的不等式对一切都成立,求实数的取值范围.
己知集合,, 若“”是“”的充分不必要条件,求的取值范围.
已知数列的前n项和,满足:三 点共线(a为常数,且). (Ⅰ)求的通项公式; (Ⅱ)设,若数列为等比数列,求a的值; (Ⅲ)在满足条件(Ⅱ)的情形下,设,数列的前n项和为,是否存在最小的整数m,使得任意的n均有成立?若存在,求出的值;若不存在,请说明理由.
已知向量,,若, 且、、分别为的三边、、所对的角. (Ⅰ)求角的大小; (Ⅱ)若,,成等差数列,且,求边的长。
已知数列满足:. (Ⅰ)求证:数列为等比数列; (Ⅱ)求数列的前项和.