选修4-5:不等式选讲已知,函数的最小值为4.(Ⅰ)求的值;(Ⅱ)求的最小值.
某公司按现有能力,每月收入为70万元,公司分析部门测算,若不进行改革,入世后因竞争加剧收入将逐月减少.分析测算得入世第一个月收入将减少3万元,以后逐月多减少2万元,如果进行改革,即投入技术改造300万元,且入世后每月再投入1万元进行员工培训,则测算得自入世后第一个月起累计收入与时间n(以月为单位)的关系为=,且入世第一个月时收入将为90万元,第二个月时累计收入为170万元,问入世后经过几个月,该公司改革后的累计纯收入高于不改革时的累计纯收入.
关于x的不等式的解集为空集,求实数k的取值范围.
已知a, b都是正数,并且a¹b,求证:a5 + b5 > a2b3 + a3b2
一个袋中有若干个大小相同的黑球、白球和红球。已知从袋中任意摸出1个球,得到黑球的概率是 2 5 ;从袋中任意摸出2个球,至少得到1个白球的概率是 7 9 . (Ⅰ)若袋中共有10个球, (i)求白球的个数; (ii)从袋中任意摸出3个球,记得到白球的个数为 ξ ,求随机变量 ξ 的数学期望 E ξ . (Ⅱ)求证:从袋中任意摸出2个球,至少得到1个黑球的概率不大于 7 10 。并指出袋中哪种颜色的球个数最少.
设 (1)证明A>; (2)