(本小题满分12分)如图,四棱锥P—ABCD中,底面ABCD为矩形,PD垂直于底面ABCD,AD=PD=2,E、F分别为CD、PB的中点.(1)求证:EF⊥平面PAB;(2)设求直线AC与平面AEF所成角的正弦值.
(12分)已知函数(1)求函数的单调区间;(2)为何值时,方程有三个不同的实根.
(13分)正项数列的前项和为且 (1)试求数列的通项公式;(2)设求数列的前项和
(13分)已知向量设函数若的最小正周期为(1)求的值;(2)求的单调区间.
已知二次函数。 (1)若任意x1,x2∈R,且,都有,求证:关于x的方程有两个不相等的实数根且必有一个根属于(); (2)若关于x的方程在()的根为m,且成等差数列,设函数f (x)的图象的对称轴方程为,求证:。
已知函数f(x)=在[0,1]上的最小值为, (1)求f(x)的解析式;(2)证明:f(1)+f(2)+…+f(n)>n-+(n∈N)