(本小题满分10分)在直角坐标系xOy中,曲线C1 (t为参数,t≠0), 其中0≤<π,在以O为极点, x轴正半轴为极轴的极坐标系中,曲线 C2 : ,C3 : (1)求C2与C3交点的直角坐标; (2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.
已知:在△ABC中,cosA = .(1)求cos2 – sin(B+C)的值;(2)如果△ABC的面积为4,AB =" 2" ,求BC的长.
在中,三边、、对角分别为、、,且 (1)求角的余弦值;(2)若,且,求和的值.
已知函数,.(1)求函数在内的单调递增区间; (2)若函数在处取到最大值,求的值; (3)若(),求证:方程在内没有实数解.(参考数据:,)
已知角为的三个内角,其对边分别为,若,,,且.(1)若的面积,求的值.(2)求的取值范围.
设函数f(x)=cos(2x+)+sinx.(1)求函数f(x)的最大值和最小正周期. w.w.(2)设A,B,C为ABC的三个内角,若cosB=,,且C为锐角,求sinA.