(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)己知每检测一件产品需要费用1 00元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).
(本小题满分14分) 已知奇函数有最大值, 且, 其中实数是正整数. 求的解析式; 令, 证明(是正整数).
(本小题满分14分) 如图, 在四棱锥中,顶点在底面上的射影恰好落在的中点上,又∠,,且 =1:2:2. (1) 求证: (2) 若, 求直线与所成的角的余弦值; (3) 若平面与平面所成的角为, 求的值
(本小题满分14分) 设甲、已、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5. 三人各向目标射击一次,求至少有一人命中目标的概率; 三人各向目标射击一次,求恰有两人命中目标的概率; (3)若甲单独向目标射击三次,求他恰好命中两次的概率.
(本小题满分14分) 已知数列{}是首项为等于1且公比不等于1的等比数列,是其前项的和,成等差数列. (1) 求和 ; (2) 证明 12成等比数列
(本小题满分14分) 已知 (1)求的值 (2)求的值