设 { a n } 和 { b n } 是两个等差数列,记 c n = max { b 1 ﹣ a 1 n , b 2 ﹣ a 2 n , … , b n ﹣ a n n } ( n = 1 , 2 , 3 , … ) ,其中 max { x 1 , x 2 , … , x s } 表示 x 1 , x 2 , , …, x s 这s个数中最大的数.
(1)若 a n = n , b n = 2 n ﹣ 1 ,求 c 1 , c 2 , c 3 的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数 M ,存在正整数 m ,当 n ≥ m 时, c n n > M ;或者存在正整数 m ,使得 c m , c m + 1 , c m + 2 , …是等差数列.
已知二次函数的图象如图所示. (1)写出函数的零点; (2)写出该函数的解析式.
已知U=R,A={x|-1≤x≤3},B={x|x-a>0}. (1)若AÍB,求实数a的取值范围; (2) 若A∩B≠Æ,求实数a的取值范围.
计算:2log32-log3+log38-
(本小题满分14分) 已知函数,. (1)设(其中是的导函数),求的最大值; (2)证明: 当时,求证:; (3)设,当时,不等式恒成立,求的最大值.
(本小题满分12分) 已知椭圆C:(a>b>0)的离心率为,短轴一个端点到右焦点的距离为 (1)求椭圆C的方程; (2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求△AOB面积的最大值.