(文科)已知椭圆的左、右两个顶点分别为A,B,直线与椭圆相交于M,N两点,经过三点A,M,N的圆与经过三点B,M,N的圆分别记为圆C1与圆C2.(1)求证:无论t如何变化,圆C1与圆C2的圆心距是定值;(2)当t变化时,求圆C1与圆C2的面积的和S的最小值.
如图,,,,四点共圆,与的延长线交于点,点在的延长线上. (1)若,,求的值; (2)若∥,求证:线段,,成等比数列.
已知函数. (1)当时,求的单调区间,如果函数仅有两个零点,求实数的取值范围; (2)当时,试比较与1的大小.
已知函数(,)的图象恒过定点,椭圆:()的左,右焦点分别为,,直线经过点且与⊙:相切. (1)求直线的方程; (2)若直线经过点并与椭圆在轴上方的交点为,且,求内切圆的方程.
如图,在正四棱锥中,底面是边长为2的正方形,侧棱,为的中点,是侧棱上的一动点。 (1)证明:; (2)当直线时,求三棱锥的体积.
在一个盒子中,放有标号分别为,,的三个小球,现从这个盒子中,有放回地先后抽得两个小球的标号分别为、,设为坐标原点,设的坐标为. (1)求的所有取值之和; (2)求事件“取得最大值”的概率.