(本小题满分12分)本公司计划2012年在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为元/分钟和200元/分钟,甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?
如图,在直三棱柱中,,,是的中点. (Ⅰ)求证: 平面; (Ⅱ)求二面角的余弦值.
某学生社团在对本校学生学习方法开展问卷调查的过程中发现,在回收上来的1000份有效问卷中,同学们背英语单词的时间安排共有两种:白天背和晚上睡前背。为了研究背单词时间安排对记忆效果的影响,该社团以5%的比例对这1000名学生按时间安排类型进行分层抽样,并完成一项实验.实验方法是,使两组学生记忆40个无意义音节(如XIQ、GEH),均要求在刚能全部记清时就停止识记,并在8小时后进行记忆检测。不同的是,甲组同学识记结束后一直不睡觉,8小时后测验;乙组同学识记停止后立刻睡觉,8小时后叫醒测验. 两组同学识记停止8小时后的准确回忆(保持)情况如图(区间含左端点而不含右端点). (1)估计这1000名被调查学生中停止后8小时40个音节的保持率不小于60%的人数; (2)从乙组准确回忆单词个数在个范围内的学生中随机选2人,求能准确回忆个单词至少有一人的概率.
已知函数. (Ⅰ)求函数的单调区间; (Ⅱ)若在内恒成立,求实数的取值范围. (Ⅲ),求证:.
如图,在平面直角坐标系中,、分别是椭圆的顶点,过坐标原点的直线交椭圆于、两点,其中在第一象限.过作轴的垂线,垂足为.连接,并延长交椭圆于点.设直线的斜率为. (Ⅰ)当直线平分线段时,求的值; (Ⅱ)当时,求点到直线的距离; (Ⅲ)对任意,求证:.
定义在上的函数同时满足以下条件:①函数在上是减函数,在上是增函数;②是偶函数;③函数在处的切线与直线垂直. (Ⅰ)求函数的解析式; (Ⅱ)设,若存在使得,求实数的取值范围.