在 △ ABC 中,内角A,B,C所对的边分别为a,b,c,已知 b + c = 2 acosB .
(1)证明: A = 2 B
(2)若 △ ABC 的面积 S = a 2 4 ,求角A的大小.
上海某化学试剂厂以x千克/小时的速度生产某种产品(生产条件要求),为了保证产品的质量,需要一边生产一边运输,这样按照目前的市场价格,每小时可获得利润是元. (1)要使生产运输该产品2小时获得的利润不低于3000元,求x的取值范围; (2)要使生产运输900千克该产品获得的利润最大,问:该工厂应该选取何种生产速度?并求最大利润.
在中,已知. (1)求证:; (2)若求角A的大小.
如图,正三棱柱ABC—A1B1C1的各棱长都相等,M、E分别是和AB1的中点,点F在BC上且满足BF∶FC=1∶3. (1)求证:BB1∥平面EFM; (2)求四面体的体积.
已知函数,f '(x)为f(x)的导函数,若f '(x)是偶函数且f '(1)=0. ⑴求函数的解析式; ⑵若对于区间上任意两个自变量的值,都有,求实数的最小值; ⑶若过点,可作曲线的三条切线,求实数的取值范围.
如图,在底面是正方形的四棱锥中,面,交于点,是中点,为上一动点. (1)求证:; (1)确定点在线段上的位置,使//平面,并说明理由. (3)如果PA=AB=2,求三棱锥B-CDF的体积