高中数学

如图,在四棱锥P—ABCD中,侧面PAD⊥底面ABCD,△PAD是正三角形,四边形ABCD是矩形,且,E为PB的中点.

(1)求证:PD∥平面ACE;
(2)求证:AC⊥PB

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分13分)在四棱锥中,底面,底面是直角梯形,

(1)求证:
(2)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知分别是正方形的中点,交于点都垂直于平面,且是线段上一动点.

(Ⅰ)求证:平面平面
(Ⅱ)若平面,试求的值;
(Ⅲ)当中点时,求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分10 分)在四棱柱P-ABCD中,底面ABCD为正方形,PD面ABCD,的中点,作于点,PD=DC。
         
(1)证明:∥平面
(2)证明:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在三棱锥中,平面平面分别为的中点.

(1)求证:∥平面
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,四边形是矩形,侧面⊥底面,若点分别是的中点.

(1)求证:∥平面
(2)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

三棱柱中,侧棱平面为等腰直角三角形,分别是的中点.

(1)求证:平面
(2)求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在三棱台中,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)若平面,
,求平面与平面所成角(锐角)的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)在正三棱锥中,分别为棱的中点,且

(1)求证:直线平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知四棱锥的底面是正方形,侧棱底面的中点.

(1)证明平面
(2)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,平面平面,

(1)求证:
(2)求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四边形ABCD为梯形,AB∥CD, 平面ABCD,
,E为BC中点。

(1)求证:平面平面PDE;
(2)线段PC上是否存在一点F,使PA//平面BDF?若存在,请找出具体位置,并进行证明;若不存在,请分析说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,矩形中,平面上的点,且平面

(1)求证:平面
(2)求证:平面
(3)求三棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正三棱柱中,分别为中点.

(1)求证:平面
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知多面体中,平面⊥平面,若四边形为矩形,中点.

(1)求证:⊥平面
(2)求证://平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学平行线法解答题