有一个容量为50的样本,数据的分组及各组的频数如下:
[12.5,15.5),3;[15.5,18.5),8;[18.5,21.5),9;
[21.5,24.5),11;[24.5,27.5),10“27.5,30.5),5;
[30.5,33.5],4.
(1)列出样本的频率分布表;
(2)画出频率分布直方图;
(3)根据频率分布直方图估计数据落在[15.5,24.5)的频率约是多少.
.某初级中学共有学生2000名,各年级男、女生人数如下表:
|
初一年级 |
初二年级 |
初三年级 |
女生 |
373 |
x |
y |
男生 |
377 |
370 |
z |
已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.
(1)求x的值;
(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?
(3)已知y245,z245,求初三年级中女生比男生多的概率.
(本小题共13分)某学校餐厅新推出A、B、C、D四款套餐,某一天四款套餐销售情况的条形图如下。为了了解同学对新推出的四款套餐的评价,对每位同学都进行了问卷调查,然后用分层抽样的方法从调查问卷中抽取20份进行统计,统计结果如下面表格所示:
(1)若同学甲选择的是A款套餐,求甲的调查问卷被选中的概率;
(2)若想从调查问卷被选中且填写不满意的同学中再选出2人进行面谈,求这两人中至少有一人选择是D款套餐的概率。
(本题10分)
一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如下图).
(1)直方图中a的值为多少?
(2) 要再用分层抽样方法抽出80人作进一步调查,则在(元)月收入段应抽出的人数为多少人。
(本题满分分)为了解高二学生的体能情况,某校抽取部分学生进行一分钟跳
绳次数的测试,将所得数据整理、分组后,画出频率分布直方图(如图).图中从左到右各小长方形面积之比为. 若第二组的频数为.
(1) 求第二组的频率是多少?样本容量是多少?
(2)若次数在以上(含次)为达标,试估计该学校全体高二学生的达标率是多少?
(本小题满分12分)
中华人民共和国《道路交通安全法》中将饮酒后违法驾驶机动车的行为分成两个档次:“酒后驾车”和“醉酒驾车”,其检测标准是驾驶人员血液中的酒精含量Q(简称血酒含量,单位是毫克/100毫升),当20≤Q≤80时,为酒后驾车;当Q>80时,为醉酒驾车.济南市公安局交通管理部门于2011年2月的某天晚上8点至11点在市区设点进行一次拦查行动,共依法查出了60名饮酒后违法驾驶机动车者,如图为这60名驾驶员抽血检测后所得结果画出的频率分布直方图(其中Q≥140的人数计入120≤Q<140人数之内).
|
(在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
编号n |
1 |
2 |
3 |
4 |
5 |
成绩 |
70 |
76 |
72 |
70 |
72 |
(1)求第6位同学成绩,及这6位同学成绩的标准差;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.
某校高二年级的一次数学考试中,为了分析学生的得分情况,随机抽取名同学的成绩,数据的分组统计表如下:
分组 |
频数 |
频率 |
频率/组距 |
(40,50] |
2 |
0.02 |
0.002 |
(50,60] |
4 |
0.04 |
0.004 |
(60,70] |
11 |
0.11 |
0.011 |
(70,80] |
38 |
0.38 |
0.038 |
(80,90] |
|||
(90,100] |
11 |
0.11 |
0.011 |
合计 |
(1)求出表中的值;
(2)根据上表,请在给出的坐标系(见答题纸)中画出频率分布直方图;
(3)为了了解某些同学在数学学习中存在的问题,现从样本中分数在中的6位同学中任意抽取2人进行调查,求分数在和中各有一人的概率.
(本小题满分10分)如图是总体的一个样本频率分布直方图,且在[15,18内频数为8.
(1)求样本在[15,18内的频率;
(2)求样本容量;
(3)若在[12,15内的小矩形面积为0.06,求在[18,33内的频数.
为了让学生了解更多“奥运会”知识,某中学举行了一次“奥运知识竞赛”,共有800名学生参加了这次竞赛,为了解本次竞赛成绩情况,从中抽取部分学生的成绩(得分均为整数,满分为100分)进行统计.请你根据尚未完成并有局部污损的频率分布表,解答下列问题:
分组 |
频数 |
频率 |
60.5~70.5 |
|
0.16 |
70.5~80.5 |
10 |
|
80.5~90.5 |
18 |
0.36 |
90.5~100.5 |
|
|
合计 |
50 |
|
(1)若用系统抽样的方法抽取50个样本,现将所有学生随机地编号为000,001,002,…,799,试写出第二组第一位学生的编号;
(2)填充频率分布表的空格(将答案直接填在表格内),并作出频率分布直方图;
(3)若成绩在85.5~95.5分的学生为二等奖,问参赛学生中获得二等奖的学生约为多少人?
.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量X(吨),与相应的生产能耗Y(吨标准煤)的几组对照数据。
X |
3 |
4 |
5 |
6 |
Y |
2.5 |
3 |
4 |
4.5 |
(1) 请画出上表数据的数点图
(2) 请根据上表提供的数据,求线性回归的方程Y=x+
(3) 已知该厂技改前100吨甲产品的生产能耗为90吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
()
为了选拔参加奥运会选手,教练员对甲,乙自行车运动员进行测试,测得他们的最大速度
的数据如下表所示(单位m/s)
请判断谁参加这项重大比赛更合适,并阐述理由。
. (满分12分) 某班同学利用国庆节进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次生活习惯是否符合低碳观念的调查,若生活习惯符合低碳观念的称为“低碳族”,否则称为“非低碳族”,得到如下统计表和各年龄段人数频率分布直方图:
组数 |
分组 |
低碳族的人数 |
占本组的频率 |
第一组 |
[25,30) |
120 |
0.6 |
第二组 |
[30,35) |
195 |
p |
第三组 |
[35,40) |
100 |
0.5 |
第四组 |
[40,45) |
0.4 |
|
第五组 |
[45,50) |
30 |
0.3 |
第六组 |
[50,55) |
15 |
0.3 |
(Ⅰ)补全频率分布直方图,并求、、的值;
(Ⅱ)从年龄段在[40,50)的“低碳族”中采用分层抽样法抽取6人参加户外低碳体验活动,其中选取2人作为领队,求选取的2名领队中恰有1人年龄在[40,45)岁的概率.
有一个容量为100的样本,数据的分组及各组的频数如下:
(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计数据小于30.5的概率。