(本题满分分)为了解高二学生的体能情况,某校抽取部分学生进行一分钟跳绳次数的测试,将所得数据整理、分组后,画出频率分布直方图(如图).图中从左到右各小长方形面积之比为. 若第二组的频数为.(1) 求第二组的频率是多少?样本容量是多少?(2)若次数在以上(含次)为达标,试估计该学校全体高二学生的达标率是多少?
在平面直角坐标系中,曲线的参数方程为(为参数),在以原点为极点,轴的正半轴为极轴的极坐标系中,曲线的极坐标方程为,射线的方程为,又与的交点为,与的除极点外的另一个交点为,当时,.(1)求的普通方程,的直角坐标方程;(2)设与轴正半轴的交点为,当时,求直线的参数方程.
如图,四边形是☉的内接四边形,不经过点,平分,经过点的直线分别交的延长线于点,且,证明:(1)∽;(2)是☉的切线.
已知函数,其中为常数,设为自然对数的底数.(1)当时,求的最大值;(2)若在区间上的最大值为,求的值.
已知椭圆的对称中心为原点,焦点在轴上,左、右焦点分别为,且,点在该椭圆上.(1)求椭圆的方程;(2)过点的直线与椭圆相交于两点,若的面积为,求以为圆心且与直线相切的圆的方程.
在三棱柱中,侧面为矩形,,为的中点,与交于点,侧面.(1)证明:;(2)若,求三棱柱的体积.