高中数学

右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知

(1)设点的中点,证明:平面
(2)求二面角的大小;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示的三个图中,上面的是一个长方体截去一个角所得多面体的直观图,它的正视图和侧视图在下面画出(单位:cm).
 
(1)按照画三视图的要求画出该多面体的俯视图;
(2)在所给直观图中连接BC′,求证:BC′∥面EFG.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图所示,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.

(1)证明:AC⊥B1D;
(2)求直线B1C1与平面ACD1所成角的正弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知四棱锥P-ABCD,底面ABCD是、边长为的菱形,又,且PD=CD,点M、N分别是棱AD、PC的中点.

(1)证明:MB平面PAD;
(2)求点A到平面PMB的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在梯形中,,,平面平面,四边形是矩形,,点在线段EF上.

(1)求异面直线所成的角;
(2)求二面角的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知在四棱锥中,底面是矩形,平面分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)若与平面所成角为,且,求点到平面的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在如图所示的几何体中,四边形是菱形,是矩形,平面⊥平面的中点.

(Ⅰ)求证://平面
(Ⅱ)在线段上是否存在点,使二面角的大小为?若存在,求出的长;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是正方形,,点在棱上.

(1)求证:平面平面
(2)当,且时,确定点的位置,即求出的值.
(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

直三棱柱ABC-A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中点.

(1)求证:AC⊥B1C;
(2)求证:AC1∥平面B1CD;

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,四棱锥中,面,底面是直角梯形,侧面是等腰直角三角形.且

(1)判断的位置关系;
(2)求三棱锥的体积;
(3)若点是线段上一点,当//平面时,求的长.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设分别为的中点.

(1)求证://平面
(2)求证:面平面

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(如图1)在平面四边形中,中点,,且,现沿折起使,得到立体图形(如图2),又B为平面ADC内一点,并且ABCD为正方形,设F,G,H分别为PB,EB,PC的中点.

(1)求三棱锥的体积;
(2)在线段PC上是否存在一点M,使直线与直线所成角为?若存在,求出线段的长;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,边长为2的正方形ABCD,E,F分别是AB,BC的中点,将△AED,△DCF分别沿DE,DF折起,使A,C两点重合于

(1)求证:⊥EF;
(2)求

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题