如图,四棱锥的底面是正方形,,点在棱上.(1)求证:平面平面;(2)当,且时,确定点的位置,即求出的值.(3)在(2)的条件下若F是PD的靠近P的一个三等分点,求二面角A-EF-D的余弦值.
己知集合A="{x" |y=}, B={y|y=x2+x+l,x∈ R). (1)求A,B;(2)求.
(本小题满分14分) (1)已知ex≥ax +1,对恒成立,求a的取值范围; (2)己知,0<x<m,求证f(x)<.
(本小题满分12分)己知函数f(x)= (1)求曲线y=f(x)在点(0,f(0))处的切线方程; (2)求证:当x∈(0,1)时,f(x)>2 (3)设实数k使得f(x)>k对x∈(0,1)恒成立,求k的最大值.
(本小题满分12分)已知函数是R上的偶函数,其图象关于点M对称 (1)求的值; (2)求的单调递增区间; (3)x∈,求f(x)的最大值与最小值.
(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分, 每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测 结束. (1)求第一次检测出的是次品且第二次检测出的是正品的概率; (2)己知每检测一件产品需要费用1 00元,设X表示直到检测出2件次品或者检测 出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).