已知椭圆的焦点在轴上,离心率,且经过点. (Ⅰ)求椭圆的标准方程;(Ⅱ)斜率为的直线与椭圆相交于两点,求证:直线与的倾斜角互补.
(本题满分14分 )在锐角中,已知内角A、B、C所对的边分别为a、b、c,且满足2sinB(2cos2-1)=-cos2B. (1)求B的大小; (2)如果,求的面积的最大值.
设数列的前项和为, 且. 设数列的前项和为,且. (1)求.(2) 设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立
(本题满分15分) 已知函数且在处取得极小值.(1)求m的值。(2)若在上是增函数,求实数的取值范围。
(本题满分14分) 已知在数列中,的前n项和,(1)求数列的通项公式;(2)令,数列的前n项和为求
(本题满分14分)在锐角三角形ABC中,已知角A、B、C所对的边分别为a、b、c,且,(1)若c2=a2+b2—ab,求角A、B、C的大小;(2)已知向量的取值范围。