右图是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知,,,,.(1)设点是的中点,证明:平面;(2)求二面角的大小;
设,是函数()的两个极值点,且.(1)求证:;(2)求证:;(3)若函数,求证:当且时,.
把表示成个连续正整数的和,求项数的最大值.
某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,求不同的安排方案种数.
(理)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数是图像上的两点,横坐标为的点满足(为坐标原点).(1)求证:为定值;(2)若,求的值;(3)在(2)的条件下,若,为数列的前项和,若对一切都成立,试求实数的取值范围.
本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.设,常数,定义运算“”:,定义运算“”: ;对于两点、,定义.(1)若,求动点的轨迹;(2)已知直线与(1)中轨迹交于、两点,若,试求的值;(3)在(2)中条件下,若直线不过原点且与轴交于点S,与轴交于点T,并且与(1)中轨迹交于不同两点P、Q , 试求的取值范围.