如图,已知直角梯形所在的平面垂直于平面,,,.
(Ⅰ)点是直线中点,证明平面;
(Ⅱ)求平面与平面所成的锐二面角的余弦值.
如图,三棱锥P ABC中,已知PA⊥平面ABC,△ABC是边长为2的正三角形,D,E分别为PB,PC中点
(1)若PA=2,求直线AE与PB所成角的余弦值;
(2)若PA,求证:平面ADE⊥平面PBC
如图,在四棱锥A-BCDE中,侧面∆ADE是等边三角形,底面BCDE是等腰梯形,且CD∥BE,DE=2,CD=4, ,M是DE的中点,F是AC的中点,且AC=4,
求证:(1)平面ADE⊥平面BCD;
(2)FB∥平面ADE.
如图,在四棱锥A-BCDE中,底面四边形BCDE是等腰梯形,BC∥DE, =45 ,O是BC的中点,AO= ,且BC=6,AD=AE=2CD=2 ,
(1)证明:AO⊥平面BCD;(2)求二面角A-CD-B的平面角的正切值.
如图,三棱锥中,,
(Ⅰ)求证:;
(Ⅱ)若,是的中点,求与平面所成角的正切值
如图,在等腰梯形中,是梯形的高,,,现将梯形沿折起,使,且,得一简单组合体如图所示,已知分别为的中点.
(1)求证:平面;
(2)求证:平面.
如图,四棱锥的底面是直角梯形,,,和是两个边长为的正三角形,,为的中点,为的中点.
(Ⅰ)求证:平面;
(Ⅱ)求证:平面;
(Ⅲ)求直线与平面所成角的正弦值.
如图,正三棱柱中,点是的中点.
(Ⅰ)求证: 平面;
(Ⅱ)求证:平面.
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,,,平面底面,为中点,M是棱PC上的点,.
(1)若点M是棱PC的中点,求证:平面;
(2)求证:平面底面;
(3)若二面角M-BQ-C为,设PM=tMC,试确定t的值.