高中数学

(本小题满分15分)如图,已知四棱锥,底面为边长为2的菱形,平面的中点,

(Ⅰ) 证明:
(Ⅱ) 若上的动点,求与平面所成最大角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体中,分别是的中点.

(1)平面
(2)平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知平面,为等边三角形,

(1)若平面平面,求CD长度;
(2)求直线AB与平面ADE所成角的取值范围.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在正方体ABCD-中,棱长为a,E为棱CC1上的的动点.

(1)求证:A1E⊥BD;
(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在四棱锥中,底面是直角梯形,的中点.

(1)求证;平面平面
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.

(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,已知四棱锥中,平面,底面是正方形,上的动点,为棱的中点.

(1)求证:平面
(2)试确定点的位置,使得平面平面,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知直三棱柱的所有棱长都相等,且分别为的中点.
(1)求证:平面平面
(2)求证:平面C平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正四棱柱中,,点上且

(Ⅰ)证明:平面
(Ⅱ)连结,求二面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.

(1)求证:PC⊥AD;
(2)求点D到平面PAM的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,四棱锥中,底面为平行四边形,
底面 .

(1)证明:
(2)求三棱锥的高.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱上,且AE==2.

(Ⅰ)求证:⊥底面ABC;
(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题