(本小题满分15分)如图,已知四棱锥,底面为边长为2的菱形,平面,,是的中点,.
(Ⅰ) 证明:;
(Ⅱ) 若为上的动点,求与平面所成最大角的正切值.
如图,在正方体ABCD-中,棱长为a,E为棱CC1上的的动点.
(1)求证:A1E⊥BD;
(2)当E恰为棱CC1的中点时,求证:平面A1BD⊥平面EBD.
(本小题满分12分)如图,在四棱锥中,底面,是直角梯形,,,,是的中点.
(1)求证;平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
如图,三棱柱中,平面ABC,ABBC , 点M , N分别为A1C1与A1B的中点.
(Ⅰ)求证:MN平面BCC1B1;
(Ⅱ)求证:平面A1BC平面A1ABB1.
如图,在三棱锥中,△是边长为的正三角形,, ,分别为,的中点,,.
(Ⅰ)求证:平面;
(Ⅱ)求直线与平面所成角的正弦值.
(本小题满分12分)
如图,已知四棱锥中,平面,底面是正方形,为上的动点,为棱的中点.
(1)求证:平面;
(2)试确定点的位置,使得平面平面,并说明理由.
如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.
(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.
如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。
(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.
如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.
(1)求证:PC⊥AD;
(2)求点D到平面PAM的距离.