高中数学

如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,
在DM上取一点G,过G和AP作平面交平面BDM于GH,求证:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分10分)已知直三棱柱中,是棱的中点.如图所示.

(1)求证:平面
(2)求锐二面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,空间四边形SABC中,SO⊥平面ABC,O为△ABC的垂心。求证:平面SOC ⊥平面SAB。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,空间四边形ABCD中,分别是AB,BC,CD的中点,求证:

(1)AC∥平面
(2)BD∥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥S-ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SB=

(1)求证:BC⊥SC; (2)设棱SA的中点为M,求证:DM⊥SB.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知四棱锥的底面是平行四边形,分别是的中点,

(Ⅰ)求证:
(Ⅱ)若,求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在空间四边形ABCD中AB⊥CD,AH⊥平面BCD,垂足为H,求证:BH⊥CD。

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正四棱柱中,,点上且

(Ⅰ)证明:平面
(Ⅱ)连结,求二面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.

(1)求证:PC⊥AD;
(2)求点D到平面PAM的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,四棱锥中,底面为平行四边形,
底面 .

(1)证明:
(2)求三棱锥的高.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱上,且AE==2.

(Ⅰ)求证:⊥底面ABC;
(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知矩形所在的平面与直角梯形所在的平面垂直,且分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
四面体ABCD中,对棱AD⊥BC,对棱AB⊥CD,试证明:AC⊥BD.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题