高中数学

如图,在四棱锥S﹣ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.

(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E﹣BD﹣C的大小为45°时,试判断点E在SC上的位置,并说明理由.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥 P - A B C 中, A B = A C , D B C 的中点, P O 平面 A B C ,垂足 O 落在线段 A D 上,已知 B C = 8 , P O = 4 , A O = 3 , O D = 2

(1)证明: A P B C

(2)在线段 A P 上是否存在点 M ,使得二面角 A - M C - β 为直二面角?若存在,求出 A M 的长;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在斜三棱柱中,O是AC的中点,A1O⊥平面,       

(1)求证: AC1⊥平面A1BC;
(2)若AA1=2,求点C到平面的距离。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,为线段上的点.
(Ⅰ)证明:
(Ⅱ)若的中点,求所成的角的正切值;
(Ⅲ)若满足,求的值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在直三棱柱中,

(1)求证
(2)在上是否存在点使得
(3)在上是否存在点使得

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

菱形中,,且,现将三角形沿着折起形成四面体,如图所示.

(1)当为多大时,?并证明;
(2)在(1)的条件下,求点到面的距离.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在斜三棱柱中,侧面是边长为的菱形,.在面中,的中点,过三点的平面交于点

(1)求证:中点;
(2)求证:平面平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在三棱台中,分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)若平面,求平面与平面所成角(锐角)的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正四棱柱中,,点上且

(Ⅰ)证明:平面
(Ⅱ)连结,求二面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.

(1)求证:PC⊥AD;
(2)求点D到平面PAM的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,四棱锥中,底面为平行四边形,
底面 .

(1)证明:
(2)求三棱锥的高.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱上,且AE==2.

(Ⅰ)求证:⊥底面ABC;
(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知矩形所在的平面与直角梯形所在的平面垂直,且分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题