菱形中,,且,现将三角形沿着折起形成四面体,如图所示.(1)当为多大时,面?并证明;(2)在(1)的条件下,求点到面的距离.
(本小题12分)如图,已知平面,,是正三角形,AD=DEAB,且F是CD的中点.(1)求证:AF//平面BCE;(2)求证:平面BCE⊥平面CDE.
(本小题12分)已知向量,,函数的最大值为6.(Ⅰ)求;(Ⅱ)将函数的图象向左平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数的图象.求在上的值域.
(本小题满分14分)已知函数.(Ⅰ)函数在区间上是增函数还是减函数?证明你的结论;(Ⅱ)当时,恒成立,求整数的最大值;(Ⅲ)试证明:()。
(本小题满分13分)已知椭圆的两焦点在轴上, 且两焦点与短轴的一个顶点的连线构成斜边长为2的等腰直角三角形。(Ⅰ)求椭圆的方程;(Ⅱ)过点的动直线交椭圆C于A、B两点,试问:在坐标平面上是否存在一个定点Q,使得以AB为直径的圆恒过点Q ?若存在求出点Q的坐标;若不存在,请说明理由。
(本小题满分12分)如图1,在Rt中,,.D、E分别是上的点,且,将沿折起到的位置,使,如图2.(Ⅰ)求证:平面平面;(Ⅱ)若,求与平面所成角的余弦值;(Ⅲ)当点在何处时,的长度最小,并求出最小值.