已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).(1)求椭圆C的标准方程;(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.
已知,函数 (1)求方程g(x)=0的解集; (2)求函数f(x)的最小正周期及其单调增区
在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为. (1)求圆C的极坐标方程; (2)P是圆C上一动点,点Q满足3,以极点O为原点,以极轴为x轴正半轴建立直角坐标系,求点Q的轨迹的直角坐标方程.
在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系.圆C1,直线C2的极坐标方程分别为ρ=4sin θ,ρcos =2. (1)求C1与C2交点的极坐标; (2)设P为C1的圆心,Q为C1与C2交点连线的中点.已知直线PQ的参数方程为(t∈R为参数),求a,b的值.
(1)设x≥1,y≥1,证明x+y+≤++xy; (2)1<a≤b≤c,证明logab+logbc+logca≤logba+logcb+logac.
已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x. (1)解关于x的不等式g(x)≥f(x)-|x-1|; (2)如果对∀x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求实数c的取值范围.