已知椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,离心率为,且过点(2,).(1)求椭圆C的标准方程;(2)M,N,P,Q是椭圆C上的四个不同的点,两条都不和x轴垂直的直线MN和PQ分别过点F1,F2,且这两条直线互相垂直,求证:为定值.
C如图,将边长为2的正方形ABCD沿对角线BD 折成一个直二面角,且EA⊥平面ABD,AE=,(Ⅰ)若,求证:AB∥平面CDE;(Ⅱ)求实数的值,使得二面角A-EC-D的大小为60°.
已知是定义在区间上的奇函数,且,若,时,有.(1)判断的单调性,并证明; (2)若对所有,恒成立,求实数t的取值范围.
已知向量,,.(Ⅰ)求函数的单调递减区间;(Ⅱ)在中,分别是角的对边,,,若,求的大小.
已知函数.(1)判断函数的奇偶性,并证明你的结论;(2)求证:是R上的增函数;(3)若,求的取值范围.(参考公式:)
已知二次函数满足:;(1)求函数的解析式;(2)求函数在上的最值.