高中数学

【原创】(本小题满分12分)如图,在四棱锥中,底面是正方形,底面,, 点分别是的中点,,且交于点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥 P - A B C D 中, P A 平面 A B C D A B =4, B C =3, A D =5, D A B = A B C =90°, E C D 的中点.

image.png

(Ⅰ)证明: C D 平面 P A E
(Ⅱ)若直线 P B 与平面 P A E 所成的角和 P B 与平面 A B C D 所成的角相等,求四棱锥 P - A B C D 的体积.

来源:2012年全国普通高等学校招生统一考试理科数学
  • 更新:2022-08-09
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,在中,已知上,且平面

(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

在正方体ABCD-A1B1C1D1中,求证:AC1BD.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在梯形ABCD中,AB∥CD,,平面平面,四边形是矩形,,点在线段上。

(1)求证:平面
(2)当为何值时,∥平面?写出结论,并加以证明;
(3)当EM为何值时,AM⊥BE?写出结论,并加以证明。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分14分)如图,在四棱锥中,底面为菱形,⊥平面的中点,的中点,

求证:(Ⅰ)平面⊥平面;(Ⅱ)//平面.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,三棱锥中,平面,点分别为的中点.

(1)求证:平面
(2)在线段上的点,且平面
①确定点的位置;
②求直线与平面所成角的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本题15分)如图,三棱锥中,底面是正三角形,的中点.

(1)求证:平面
(2)设二面角的大小为,求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,AB=2,∠BAD=60°.

(Ⅰ)求证:BD⊥平面PAC;
(Ⅱ)当平面PBC与平面PDC垂直时,求PA的长.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱柱ABC-A1B1C1中,已知AB⊥侧面BB1C1C,AB=BC=1,BB1=2,∠BCC1=60°。

(Ⅰ)求证:C1B⊥平面ABC;
(Ⅱ)设(0≤λ≤1),且平面AB1E与BB1E所成的锐二面角的大小为30°,试求λ的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,正四棱柱中,,点上且

(Ⅰ)证明:平面
(Ⅱ)连结,求二面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P-ABCD,侧面PAD是边长为2的正三角形,且与底面垂直,底面ABCD是∠ABC=60°的菱形,M为PC的中点.

(1)求证:PC⊥AD;
(2)求点D到平面PAM的距离.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)
如图,四棱锥中,底面为平行四边形,
底面 .

(1)证明:
(2)求三棱锥的高.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)已知三棱柱ABC-中,平面⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,=3,E、F分别在棱上,且AE==2.

(Ⅰ)求证:⊥底面ABC;
(Ⅱ)在棱上找一点M,使得∥平面BEF,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,已知矩形所在的平面与直角梯形所在的平面垂直,且分别为的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:平面⊥平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用解答题