(本小题满分14分)如图,在四棱锥中,底面为菱形,⊥平面,为的中点,为的中点,求证:(Ⅰ)平面⊥平面;(Ⅱ)//平面.
(本小题满分15分)设二次函数满足下列条件:①当时,其最小值为0,且成立;②当时,恒成立.(Ⅰ)求的值并求的解析式;(Ⅱ)求最大的实数,使得存在,只要当时,就有成立.
(本小题满分15分)如图,设抛物线方程为,M为直线上任意一点,过M引抛物线的切线,切点分别为A、B.若抛物线上一点P到直线l的距离为d,F为焦点时,.(Ⅰ)抛物线方程;(Ⅱ)求M到直线AB的距离的最小值.
(本小题满分15分)如图,已知正方形和矩形所在的平面互相垂直,,为线段的中点。(Ⅰ)求证:∥平面;(Ⅱ)求二面角的平面角的大小.
(本小题满分15分)已知数列的前n项和为Sn,且满足Sn+an=2.(Ⅰ)求数列的通项公式;(Ⅱ)求满足不等式的n的取值范围.
(本小题满分14分)在中,角、B、C所对的边分别是,.(Ⅰ)求角C;(Ⅱ)若的最短边长是,求最长边的长.