(本小题满分12分)已知等差数列{}的前n项和为Sn,且=(1)求通项; (2)求数列{}的前n项和的最小值。
设a,b,c是正实数,求证:aabbcc≥(abc).
设a1,a2,…,an为实数,证明:≤.
已知a,b,c为正数,用排序不等式证明:2(a3+b3+c3)≥a2(b+c)+b2(a+c)+c2(a+b).
已知n个正整数的和是1000,求这些正整数的乘积的最大值.
已知不等式|a﹣2|≤x2+2y2+3z2对满足x+y+z=1的一切实数x,y,z都成立,求实数a的取值范围.