如图,在四棱锥 P - A B C D 中, P A ⊥ 平面 A B C D , A B =4, B C =3, A D =5, ∠ D A B = ∠ A B C =90°, E 是 C D 的中点.
(Ⅰ)证明: C D ⊥ 平面 P A E ; (Ⅱ)若直线 P B 与平面 P A E 所成的角和 P B 与平面 A B C D 所成的角相等,求四棱锥 P - A B C D 的体积.
定义在上的函数满足:对任意、恒成立,当时,. (1)求证在上是单调递增函数; (2)已知,解关于的不等式; (3)若,且不等式对任意恒成立.求实数的取值范围.
设函数 (1)求证:是奇函数,在区间上是单调递减函数; (2)若对任意恒成立,求实数的取值范围.
已知关于的不等式的解集是,函数的定义域是,若.求实数的取值范围.
已知二次函数满足:(1)关于的方程的两实根是. (1)求的解析式; (2)设,且在区间上是单调函数,求实数的取值范围.
计算:(1)其中 (2)