(本小题共14分)设函数在处取得极值.(Ⅰ)求与满足的关系式;(Ⅱ)若,求函数的单调区间;(Ⅲ)若,函数,若存在,,使得成立,求的取值范围.
找出与下列各角终边相同的最小正角,并判断它们在第几象限(1)430° (2)-1550° (3)
是否存在常数,使得函数在闭区间上的最大值为1?若存在,求出对应的值;若不存在,说明理由.
已知定义域为的函数是奇函数。(Ⅰ)求的值;(Ⅱ)解不等式
为了预防流感,某学校对教室用药熏消毒法进行消毒. 已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为(a为常数),如图所示,根据图中提供的信息,回答下列问题:(Ⅰ)从药物释放开始,求每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式?(Ⅱ)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室,那从药物释放开始,至少需要经过多少小时后,学生才能回到教室.
已知函数,(1)用五点法画出它在一个周期内的闭区间上的图象;(2)求单调增减区间。