高中数学

如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,E为侧棱PA的中点.

(1)求证:PC //平面BDE;
(2)若PC⊥PA,PD=AD,求证:平面BDE⊥平面PAB.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

已知两条直线,两个平面,下面四个命题中不正确的是

A.
B.
C.
D.
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是矩形,侧面是正三角形,且侧面底面为侧棱的中点.

(1)求证:平面
(2)若,试求二面角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥P—ABCD中,底面ABCD为矩形,PA⊥底面ABCD,PA=AB,点E是PB的中点,点F是EB的中点.

(Ⅰ) 求证:平面
(Ⅱ) 求证:平面

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在四棱锥中,是正方形,平面分别是的中点.

(1)求证:平面平面
(2)在线段上确定一点,使平面,并给出证明.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在边长为4的菱形ABCD中,∠DAB=60°,点E,F分别是边CD,CB的中点,EF∩AC=O,沿EF将△CEF翻折到△PEF,连接PA,PB,PD,得到五棱锥P﹣ABFED,且,PB=

(1)求证:BD⊥平面POA;
(2)求二面角B﹣AP﹣O的正切值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2AB,F是CD的中点.

(Ⅰ)求证:平面CBE⊥平面CDE;
(Ⅱ)求二面角C—BE—F的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,四棱锥的底面是平行四边形,平面中点,中点.

(1)求证:
(2)若面,求证:

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,PA=AD=1,AB=,点E为PD的中点,点F在棱DC上移动。

(1)当点F为DC的中点时,试判断EF与平面PAC的位置关系,并说明理由;
(2)求证:无论点F在DC的何处,都有PF⊥ AE
(3)求二面角E-AC-D的余弦值。

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,在直三棱柱ABC-A1B1C1中,BC=AC,AC1⊥A1B,M,N分别是A1B1,AB的中点,给出下列结论:①C1M⊥平面A1ABB1②A1B⊥NB1 ,③平面AMC1//平面CNB1,  其中正确结论的个数为  (  )

A.0 B.1 C.2 D.3
  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,

(1)证明:平面平面
(2)若,令AE与平面ABCD所成角为,且,求该四棱锥的体积.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

(本小题满分12分)在三棱锥中,,点在棱上,且
(Ⅰ)试证明:
(Ⅱ)若,过直线任作一个平面与直线相交于点,得到三棱锥的一个截面,求面积的最小值; 
(Ⅲ)若,求二面角的正弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

直三棱柱中,分别为的中点.
(1)求证:
(2)求异面直线所成角的余弦值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图所示,已知ABCD为梯形,,且,M为线段PC上一点.

(1)当时,证明:;
(2)设平面,证明:
(3)当平面MBD将四棱锥恰好分成两个体积体积相等的几何体时,试求的值.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

如图,在三棱锥底面ABC,且SB=分别是SA、SC的中点.

(Ⅰ)求证:平面平面BCD;
(Ⅱ)求二面角的平面角的大小.

  • 更新:2020-03-19
  • 题型:未知
  • 难度:未知

高中数学空间向量的应用试题