(本小题满分12分)如图,矩形中,,,是中点,为上的点,且.
(1)求证:;
(2)求三棱锥的体积.
如图,在多面体中,四边形是菱形,相交于点,,,平面平面,,点为的中点.
(1)求证:直线平面;
(2)求证:直线平面.
若是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)
①若直线,则在平面内,一定不存在与直线平行的直线.
②若直线,则在平面内,一定存在无数条直线与直线垂直.
③若直线,则在平面内,不一定存在与直线垂直的直线.
④若直线,则在平面内,一定存在与直线垂直的直线.
如图,点,分别是正方体的棱,中点,点,分别是线段,上的点,则与平面垂直的直线有( )条
A.0 | B.1 | C.2 | D.无穷多 |
在三棱柱ABC-A1B1C1中,AB=BC=CA=AA1,侧棱AA1⊥平面ABC,O、D、E分别是棱AB、A1B1、AA1的中点,点F在棱AB上,且.
(1)求证:EF∥平面BDC1;
(2)求证:平面OCC1D⊥平面ABB1 A1;
(3)求二面角E-BC1-D的余弦值.
(本小题满分为14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)在图2中,若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.
(本小题满分为14分)如图1所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD为∠ACB的平分线,点E在线段AC上,CE=4.如图2所示,将△BCD沿CD折起,使得平面BCD⊥平面ACD,连结AB,设点F是AB的中点.
(1)求证:DE⊥平面BCD;
(2)在图2中,若EF∥平面BDG,其中G为直线AC与平面BDG的交点,求三棱锥BDEG的体积.
如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,又棱PA=AB=2,E为CD的中点,.
(Ⅰ)求证:直线EA⊥平面PAB;
(Ⅱ)求直线AE与平面PCD所成角的正切值.
(本小题满分12分)如图,在四棱锥中,,四边形是菱形,且交于点,是上任意一点.
(1)求证:;
(2)已知二面角的余弦值为,若为的中点,求与平面所成角的正弦值.
(本小题满分12分)在如图所示的几何体中,四边形ABCD是等腰梯形,AB//CD,∠ABC=60°,AB=2CB=2.在梯形ACEF中,EF//AC,且平面ABCD.
(Ⅰ)求证:;
(Ⅱ)若二面角为45°,求CE的长.
(本小题满分14分)如图,将一副三角板拼接,使他们有公共边BC,且使这两个三角形所在的平面互相垂直,,,,BC=6.
(1)证明:平面ADC^平面ADB;
(2)求二面角A—CD—B平面角的正切值.
(本小题满分13分)如图1,在中,,,,、分别为、的中点,连接并延长交于,将沿折起,使平面平面,如图2所示.
(1)求证:平面;
(2)求平面与平面所成的锐二面角的余弦值;
(3)在线段上是否存在点使得平面?若存在,请指出点的位置;若不存在,说明理由.