如图所示,四棱锥P-ABCD中,底面ABCD为菱形,且直线PA⊥平面ABCD,又棱PA=AB=2,E为CD的中点,.(Ⅰ)求证:直线EA⊥平面PAB;(Ⅱ)求直线AE与平面PCD所成角的正切值.
已知函数.(1)当时,求的值;(2)当时,求的最大值和最小值。
设定义在[-2,2]上的奇函数f(x)在区间[0,2]上单调递减,若f(m)+f(m-1)>0,求实数m的取值范围.
(12分)判断函数y=在区间[2,6]上的单调性,并求最大值和最小值.
(10分)解不等式
(14分)已知圆M过定点,圆心M在二次曲线上运动(1)若圆M与y轴相切,求圆M方程;(2) 已知圆M的圆心M在第一象限, 半径为,动点是圆M外一点,过点与圆M相切的切线的长为3,求动点的轨迹方程;(3)若圆M与x轴交于A,B两点,设,求的取值范围?