(本题满分12分) 已知函数
的图象与函数
的图象关于点A
(0,1)对称.(1)求函数
的解析式(2)若
=
+
,且
在区间(0,
上的值不小于
,求实数
的取值范围.
某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.
(1)分别写出用x表示y和S的函数关系式(写出函数定义域);
(2)怎样设计能使S取得最大值,最大值为多少?
(本小题满分15分)已知函数
(
且
).
(Ⅰ)若
,试求
的解析式;
(Ⅱ)令
,若
,又
的图像在
轴上截得的弦的长度为
,且
,试比较
、
的大小.
已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=
.
(1)求f(x)在[-1,1]上的解析式;(2)证明:f(x)在(0,1)上是减函数.
已知函数y="f(x)="
(a,b,c∈R,a>0,b>0)是奇函数,当x>0时,f(x)有最小值2,其中b∈N且f(1)< 
(1)试求函数f(x)的解析式;
(2)问函数f(x)图象上是否存在关于点(1,0)对称的两点,若存在,求出点的坐标;若不存在,说明理由。
(
已知三个函数
其中第二个函数和第三个函数中的
为同一个常数,且
,它们各自的最小值恰好是方程
的三个根.
(Ⅰ) 求证:
;
(Ⅱ) 设
是函数
的两个极值点,求
的取值范围.