某地方政府准备在一块面积足够大的荒地上建一如图所示的一个矩形综合性休闲广场,其总面积为3000平方米,其中场地四周(阴影部分)为通道,通道宽度均为2米,中间的三个矩形区域将铺设塑胶地面作为运动场地(其中两个小场地形状相同),塑胶运动场地占地面积为S平方米.(1)分别写出用x表示y和S的函数关系式(写出函数定义域);(2)怎样设计能使S取得最大值,最大值为多少?
(本小题满分12分)设函数(其中,是自然对数的底数)(I)若处的切线方程;(II)若函数上有两个极值点.①实数m的范围; ②证明的极小值大于e.
(本小题满分10分)已知是曲线:的两条切线,其中是切点,(I)求证:三点的横坐标成等差数列;(II)若直线过曲线的焦点,求面积的最小值;
(本小题满分9分)平行四边形ABCD中,AB=2,AD=,且,以BD为折线,把折起,使平面,连AC. (Ⅰ)求证: (Ⅱ)求二面角B-AC-D平面角的大小; (Ⅲ)求四面体ABCD外接球的体积.
已知等比数列满足,且是与的等差中项;(Ⅰ)求数列的通项公式; (Ⅱ)若,,求使不等式成立的 的最小值;
已知函数.(Ⅰ)求函数的单调递增区间;(Ⅱ)若,,求的值;