某市今年11份曾发生H1N1流感,据统计,11月1日该市流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人,到11月30日止,该市在这30日内感染该病毒的患者总共8670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.
已知f(x+1)=x2-4,等差数列{an}中,a1=f(x-1), a2=-
,a3=f(x).
(1)求x值;
(2)求a2+a5+a8+…+a26的值.
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求sn;
(3)设bn=( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求sn;
(3)设bn=( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。
如果一个数列的各项都是实数,且从第二项开始,每一项与它前一项的平方差是相同的常数,则称该数列为等方差数列,这个常数叫这个数列的公方差.
(1)设数列
是公方差为
(p>0,an >0)的等方差数列,
求
的通项公式;
(2)若数列
既是等方差数列,又是等差数列,证明该数列为常数列
已知f(x+1)=x2-4,等差数列{an}中,a1=f(x-1), a2=-
,a3=f(x).
(1)求x值;
(2)求a2+a5+a8+…+a26的值.
下表给出一个“等差数阵”:
| 4 |
7 |
() |
() |
() |
…… |
![]() |
…… |
| 7 |
12 |
() |
() |
() |
…… |
![]() |
…… |
| () |
() |
() |
() |
() |
…… |
![]() |
…… |
| () |
() |
() |
() |
() |
…… |
![]() |
…… |
| …… |
…… |
…… |
…… |
…… |
…… |
…… |
…… |
![]() |
![]() |
![]() |
![]() |
![]() |
…… |
![]() |
…… |
| …… |
…… |
…… |
…… |
…… |
…… |
…… |
…… |
其中每行、每列都是等差数列,
表示位于第i行第j列的数。
(I)写出
的值;(II)写出
的计算公式;