数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求sn;
(3)设bn=( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。
数列{an}中,a1=8,a4=2且满足an+2=2an+1-an n∈N
(1)求数列{an}的通项公式;
(2)设Sn=|a1|+|a2|+…+|an|,求sn;
(3)设bn=( n∈N),Tn=b1+b2+…+bn( n∈N),是否存在最大的整数m,使得对任意n∈N,均有Tn>成立?若存在,求出m的值;若不存在,请说明理由。
下表给出一个“等差数阵”:
| 4 |
7 |
() |
() |
() |
…… |
![]() |
…… |
| 7 |
12 |
() |
() |
() |
…… |
![]() |
…… |
| () |
() |
() |
() |
() |
…… |
![]() |
…… |
| () |
() |
() |
() |
() |
…… |
![]() |
…… |
| …… |
…… |
…… |
…… |
…… |
…… |
…… |
…… |
![]() |
![]() |
![]() |
![]() |
![]() |
…… |
![]() |
…… |
| …… |
…… |
…… |
…… |
…… |
…… |
…… |
…… |
其中每行、每列都是等差数列,
表示位于第i行第j列的数。
(I)写出
的值;(II)写出
的计算公式;
(本小题满分12分)已知
,设
,
.(Ⅰ)求出函数
的解析式;(Ⅱ)是否存在
使得函数
能以
为其最小值?若能,求出对应的
的取值或取值范围;若不能,试说明理由.