(本小题满分14分)已知椭圆:的一个焦点为,且过点,右顶点为,经过点的动直线与椭圆交于两点.
(1)求椭圆方程;
(2)记和的面积分别为,求的最大值;
(3)在轴上是否存在一点,使得点关于轴的对称点落在直线上?若存在,则
求出点坐标;若不存在,请说明理由.
(本小题共13分)已知椭圆的离心率为,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.斜率为的直线过椭圆的上焦点且与椭圆相交于,两点,线段的垂直平分线与轴相交于点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求的取值范围;
(Ⅲ)试用表示△的面积,并求面积的最大值.
(本小题满分14分)已知,为椭圆的左、右顶点,为其右焦点,是椭圆上异于,的动点,且面积的最大值为.
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以为直径的圆与直线的位置关系,并加以证明.
(本小题满分13分)已知函数.
(Ⅰ)若曲线在点处的切线与直线垂直,求函数的单调区间;
(Ⅱ)若对于都有成立,试求的取值范围;
(Ⅲ)记.当时,函数在区间上有两个零点,求实数的取值范围.
(本小题共14分)已知椭圆 经过点其离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线与椭圆相交于A、B两点,以线段为邻边作平行四边形OAPB,其中顶点P在椭圆上,为坐标原点.求的取值范围.
(本小题满分12分)已知椭圆:的离心率为,右顶点是抛物线的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点的直线与椭圆交于,两个不同的点,且使成立(为直线外的一点)?若存在,求出的方程;若不存在,说明理由.
已知函数.
(Ⅰ)若,试判断在定义域内的单调性;
(Ⅱ)若在上的最小值为,求实数的值;
(Ⅲ)若在(1,+∞)上恒成立,求实数的取值范围.
设,是函数的图象上任意两点,若为,的中点,且的横坐标为.
(1)求;
(2)若,,求;
(3)已知数列的通项公式(,),数列的前项和为,若不等式对任意恒成立,求的取值范围.