高中数学

如图已知抛物线过点,直线两点,过点且平行于轴的直线分别与直线轴相交于点

(1)求的值;
(2)是否存在定点,当直线过点时,△与△的面积相等?若存在,求出点的坐标;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.

(1)求椭圆的标准方程;
(2)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.
 
(1)证明:PF⊥FD;
(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;
(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知圆C:x2+y2+2x-4y+3=0.
(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程;
(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,已知抛物线的方程为,过点作直线与抛物线相交于两点,点的坐标为,连接,设轴分别相交于两点.如果的斜率与的斜率的乘积为,则的大小等于                 

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知数列为等差数列,其公差d不为0,的等差中项为11,且,令,数列的前n项和为.
(1)求
(2)是否存在正整数m,n(1<m<n),使得成等比数列?若存在,求出所有的m,n的值;若不存在,请说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,在△ABC中,∠ABC=90°,∠A=30。,斜边AC上的中线BD=2,现沿BD将△BCD折起成三棱锥C-ABD,已知G是线段BD的中点,E,F分别是CG,AG的中点.

(1)求证:EF//平面ABC;
(2)三棱锥C—ABD中,若棱AC=,求三棱锥A一BCD的体积.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

如图,抛物线的焦点为F,斜率的直线过焦点F,与抛物线交于A、B两点,若抛物线的准线与x轴交点为N,则(  )

A. 1  B.   C.    D.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;
(3)设q>p>2,求证:当x∈(p,q)时,.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

在平面直角坐标系xoy中,以点P为圆心的圆与圆x2+y2-2y=0外切且与x轴相切(两切点不重合).
(1)求动点P的轨迹方程;
(2)若直线mx一y+2m+5=0(m∈R)与点P的轨迹交于A、B两点,问:当m变化时,以线段AB为直径的圆是否会经过定点?若会,求出此定点;若不会,说明理由.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知函数,若时,恒成立,则实数k的取值范围是     .

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

若两曲线在交点P处的切线互相垂直,则称该两曲线在点P处正交,设椭圆与双曲线在交点处正交,则椭圆的离心率为(  )

A. B. C. D.
  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知
(1)当时,求的最大值;
(2)求证:恒成立;
(3)求证:.(参考数据:

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

已知椭圆C的两个焦点是)和,并且经过点,抛物线的顶点E在坐标原点,焦点恰好是椭圆C的右顶点F
(1)求椭圆C和抛物线E的标准方程;
(2)过点F作两条斜率都存在且互相垂直的直线l1l2l1交抛物线E于点ABl2交抛物线E于点GH,求的最小值.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

设函数,数列满足
(1)求数列的通项公式;
(2)对,设,若恒成立,求实数的取值范围.

  • 更新:2020-03-18
  • 题型:未知
  • 难度:未知

高中数学试题